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Optimum protocol for fast-switching free-energy calculations
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Free-energy differences computed from fast-switching simulations or measurements according to the Jarzyn-
ski equation are independent of the particular protocol specifying how the control parameter is changed in time.
In contrast, the average work carried out on the system as well the accuracy of the resulting free energy
strongly depend on the protocol. Recently, Schmiedl and Seifert [Phys. Rev. Lett. 98, 108301 (2007)] found
that protocols that minimize the average work for a given duration of the switching process have discrete steps
at the beginning and the end. Here we determine numerically the protocols that minimize the statistical error in
the free energy estimate and find that such minimum error protocols have similar discrete jumps. Our analysis
shows that the reduction in computational effort achieved by the use of steplike protocols can be considerable.
Such large savings of computing time, however, typically occur for parameter ranges in which an application
of the Jarzynski equation is impractical due to large statistical errors arising from the exponential work

average.
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I. INTRODUCTION

According to the Clausius inequality, a corollary of the
second law of thermodynamics, the work W carried out on a
macroscopic system in contact with a heat bath by manipu-
lating a control parameter exceeds the free-energy difference
AF between the equilibrium states corresponding to the ini-
tial and final value of the control parameter,

W= AF. (1)

The equal sign in this relation holds if the process is carried
out reversibly and the system is in equilibrium at all times
during the transformation. If the nonequilibrium transforma-
tion is carried out on a microscopic system, for instance a
strand of RNA stretched with optical tweezers, the values of
the work performed during different realizations of the pro-
cess differ due to thermal fluctuations leading to a statistical
work distribution p(W). In this case, individual work values
typically exceed the free-energy difference AF but, occasion-
ally, they can be smaller than AF, seemingly violating the
Clausius inequality and, hence, the second law of thermody-
namics. In the average over many realizations of the non-
equilibrium process, however, Eq. (1) remains valid as re-
quired from fundamental thermodynamics.

Based on the Clausius inequality, one can estimate free-
energy differences in experiments and simulations by mea-
suring the work carried out in slow transformations, with
corrections derived from fluctuation-dissipation relations that
take into account small deviations from equilibrium [1]. It
became clear in the past decade or so, however, that fluctua-
tions of nonequilibrium work carry important information
about the equilibrium properties of the system that goes far
beyond that obtainable from linear response theory. Most
notably, the Clausius inequality can be turned into an equal-
ity by averaging over the work exponential rather than the
work itself [2],
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Here, the angular brackets (...) indicate an average over
many realizations of the nonequilibrium process starting
from initial conditions distributed according to the
Boltzmann-Gibbs distribution at reciprocal temperature (3
=1/kgT. This exact equation, now known as the Jarzynski
nonequilibrium work theorem, relates the equilibrium free-
energy difference AF to the statistics of nonequilibrium work
W. Remarkably, this relation holds under very general con-
ditions [3,4] regardless of how strongly the system is driven
away from equilibrium. In other words, the Jarzynski theo-
rem is valid for an arbitrary protocol \(7) according to which
the control parameter \ is switched from its initial value \; to
its final values A, in finite time 7. A related result is the
Crooks fluctuation theorem, which connects the work distri-
butions of the forward process and the reverse process, in
which the control parameter is varied according to the time-
reversed forward protocol [5,6].

The nonequilibrium work theorem offers an interesting
way of computing free-energy differences from simulations
[2] or experiments [8,7]. In both cases, the procedure sug-
gested by Eq. (2) is essentially the same. One first equili-
brates the system at reciprocal temperature 8 with the control
parameter fixed at its initial value A4. Then, one changes A\
from A\, to Ay following a given protocol \(z). During the
transformation, the system evolves in time according to the
underlying dynamics and a certain amount of work is per-
formed on the system via the change in the control param-
eter. Repeating this procedure many times with different ini-
tial conditions and averaging the work exponential exp(
—BW) over the work values obtained in the individual real-
izations of the nonequilibrium process one obtains an esti-
mate for the free-energy difference AF.

The accuracy of the free-energy estimate computed fol-
lowing this algorithm strongly depends on the protocol used
for changing the control parameter [8-10]. As in conven-
tional methods for free-energy computations, the accuracy of
the calculation crucially depends on the ability of the proce-
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dure to sample all important parts of configuration/phase
space [11]. For slow switching, the system is capable of ex-
ploring all relevant phase space regions and the work distri-
bution P(W) is strongly peaked around the free-energy dif-
ference AF. In this case, the exponential work average
converges rapidly leading to an accurate free-energy estima-
tion. However, slow switching trajectories are long and
therefore computationally costly. Therefore, one would in
general prefer to perform the work process at a higher
switching rate using shorter trajectories and driving the sys-
tem strongly out of equilibrium. The resulting work distribu-
tion is then typically shifted to larger work values and the
exponential average of Eq. (2) is dominated by rare work
values leading to slow convergence of the exponential work
average [9,10,12]. The statistical errors arising in this case
can easily offset the computational benefit of short trajecto-
ries [9] such that fast-switching method based on the non-
equilibrium work theorem are, in general, not superior to
conventional free-energy calculation methods such as Zwan-
zig’s thermodynamics perturbation approach [13] or Kirk-
wood’s thermodynamic integration method [14].

While the rate at which the nonequilibrium process is car-
ried out is certainly the most important parameter determin-
ing the statistical error in the free-energy estimate, also the
particular shape of the protocol for a given total switching
time 7 can play a significant role. From a computational per-
spective it is useful to determine the protocol that minimizes
the numerical cost of obtaining a certain accuracy in the
free-energy estimate. Recently, Schmiedl and Seifert have
addressed this question and have determined the protocol
that yields the smallest average work for driven systems
evolving according to overdamped stochastic dynamics [15].
Analyzing two different one-dimensional models, a colloidal
particle dragged in a moving laser trap and a colloidal par-
ticle in a harmonic trap with changing strength, Schmiedl
and Seifert found that the optimum protocol has discontinu-
ous jumps both at the start and the end of the process. This
surprising result is in contrast to expectations raised by a
linear response analysis, which yielded a smooth optimum
protocol free of jumps [16]. For the particle in the moving
trap, the protocol with steps leads to a reduction in the aver-
age work of up to 12% compared to the linear continuous
protocol. Subsequently, Then and Engel [17] have studied
numerically a nonlinear system for different parameters and
have found that the system can have one, two, or even more
jumps and that there is not only one optimal protocol, but a
family of them. More recently, Gomez-Martin, Schmiedl,
and Seifert [18] have determined the optimum protocol for
underdamped rather than overdamped stochastic dynamics.
Also for this type of dynamics the steps in the protocol per-
sist and, moreover, they are complemented by deltalike sin-
gularities occurring at the start and at the end of the switch-
ing process.

While protocols with steps were shown to minimize the
average work carried out during the switching process, the
accuracy of the free-energy estimate, however, is not directly
related to the average work and a protocol optimized with
respect to the average work does not necessarily minimize
the statistical error in the free energy [10,12]. Rather, the
statistical error depends on the variance of the work expo-
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nential. In the present paper we determine numerically pro-
tocols that minimize the statistical error and compare them to
protocols that minimize the average work. In particular, we
address the question of whether the discontinuous steps
found at the beginning and end of the minimum work proto-
col will also appear for the minimum error protocol. We find
that for the cases studied here, the two protocols are similar.
In particular, steplike discontinuities of similar magnitude
appear also when optimizing the accuracy of the free-energy
estimate.

The remainder of this paper is organized as follows. In
Sec. IT we specify the fast-switching procedure in detail and
explain how the statistical errors in the free energy can be
estimated. In Sec. III we present the numerical procedure we
use for the protocol optimization. This method is then ap-
plied in Sec. IV to various fast-switching processes. Some
conclusions are provided in Sec. V.

II. ERROR ESTIMATION

Several methods based on the Jarzynski nonequilibrium
work theorem and the Crooks fluctuation theorem have been
developed recently for the extraction of free energies from
fast-switching measurements of simulations [8,19-30,32].
Here, we will focus our analysis on the protocol optimization
for the straightforward application of the Jarzynski equation.

To set the notation, consider a system with energy H(x,\)
depending on the system state x consisting of the particle
positions and, if necessary, the particle momenta, and the
control parameter \. The free-energy difference between the
two equilibrium states A and B corresponding to A4 and Ap,
respectively, is then given by

Jdx exp{- BH(x,\p)}
Jdx exp{= BH(x,\ )}

As the control parameter is switched in time 7 from its initial
to its final value following the protocol \(r), the work

AFZFB—FAZ—/(BTII‘I (3)

Wx(0),\(1)] = frthiH[t,)\(t)] (4)
o RN

is performed on the system. In the above equation, the nota-
tion W[x(z),\(r)] indicates that the work depends both on
protocol A(z) as well as on the particular trajectory x(z) fol-
lowed by the system. By generating N trajectories starting
from initial conditions distributed according to p(x)
ocexp{—BH(x,\,)}, one obtains the free-energy estimate

N
AFy=—kgT ln]%lz exp(- W), (5)

i=1

where W denotes the work performed along the ith trajec-
tory. Due to the nonlinearity of the logarithm, this free-

energy estimator is biased, i.e., the expectation value of AFy
differs from the free-energy difference AF. In addition to the
bias, the free-energy estimator from Eq. (5) is affected by
statistical errors. In the large sample limit, i.e., for large N,
the bias can be neglected compared to the statistical error
and, for statistically independent work values, the mean
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squared deviation of the free-energy estimator AFy from AF
is given by [8,31]
2

i) =1}, (6)

&2 = (AFy— AF)

where the dissipative work Wy is defined as the work per-
formed in excess of the free-energy difference AF,

de W-AF. (7)

Thus, the expectation value of the error essentially depends
on (exp(—28W)) and it is this quantity one has to minimize
with respect to the protocol \(r) in order to optimize the
accuracy of the free-energy calculation. Note that the aver-
age (exp(=2BW)) is fully determined by P(W), the distribu-
tion of work carried out during the switching process.

Numerical procedures to minimize the statistical error in
the free energy, such as the one discussed in the next section,
rely on an accurate determination of the average (exp(
—2BW)) as well as its gradient with respect to the protocol
\(z). The estimator of this average, however, is typically af-
fected by statistical uncertainties that due to the squared ex-
ponential by far exceed those of the exponential average
(exp(—BW)) evaluated in applications of the Jarzynski equa-
tion. Since statistical errors often even make a direct calcu-
lation of Jarzynski’s exponential work average impractical,
an accurate error estimation based on the numerical calcula-
tion of the average (exp(-2B8W)) seems exceedingly de-
manding.

This computational difficulty can be alleviated by ex-
pressing the average (exp(—=2BW)) in terms of the work per-
formed on the system during the reverse process. Using the
Crooks fluctuation theorem, one can show that [12]

(exp(=2BW)) = exp(= BAF)(exp(BW))g. (8)

where the notation (...)p indicates an average over
realizations of the reverse process. As a result, minimizing
(exp(-28W)) with respect to the forward protocol is math-
ematically equivalent to minimizing the average (exp(8W))x
for the time reversed protocol Ag(¢)=N(7—¢). Depending on
the work distribution P(W), the fluctuations of exp(8W) can
be much more benign than those of exp(-28W) leading to
major savings in the estimation of the statistical error in the
free energy. Using Eq. (8), the expected error can be ex-
pressed in terms of the dissipative work W5 =W+AF car-
ried out during the reverse process [12],

22

k
#= BTT{<exp(ﬁW§iss>>R -1} ©)

It follows [12] that about
Niz={(exp(=28W)) = (exp(BWis,))r (10)

trajectories are required to obtain an accuracy of kg7 in the
estimation of the free energy, a result derived previously by
Jarzynski following a different route [10]. Thus, the protocol
that optimizes the accuracy (or, equivalently, minimizes the
number of trajectories required to obtain a given error level)
in forward direction, minimizes the exponential average of
the dissipative work carried out in the reverse process.
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The extent with which the error estimation based on the
time-reversed process can facilitate the estimation of error
can be illustrated using a simple model consisting of a par-
ticle dragged by a moving harmonic trap under the influence
of friction and noise (see Sec. IV A). For a trap translated at
constant velocity v, the work distribution is Gaussian,

1 _w-w)?
P(W)_V/zwa%VeXp{ 202, }

with average (W) and variance oy, depending on the tem-
perature, the friction constant, the force constant and velocity
of the trap, and the translated distance [12]. In this case,
average work and variance are related by 2(W)= 8o, and the
forward and backward process are identical such that we can
drop the subscript R.

For this simple model, the expected errors for the aver-
ages (exp(—=2BW)) and (exp(BW)) can be calculated analyti-
cally,

(11)

= (3PP = [P ] (12)
= 8PP = [P ) (13)

Here, the notation SA=A-{A) denotes the deviation of a
quantity from its average. According to the above equations,
if Ny, forward trajectories are required to obtain a certain
accuracy of the error estlmator the same accuracy can be
obtained from N, = \wa backward trajectories. The statis-
tical error of the exponential average appearing in the
Jarzynski equation is given by

{8 = [0 1] (14)

such that even less trajectories are required to obtain the
same accuracy in the estimation of this average.

In summary, the results obtained above for a simple
model which can be solved analytically indicate that the
computational cost of estimating errors in the free energy can
be reduced considerably by determining it from trajectories
computed for the backward rather than the forward transfor-
mation. After the optimization has been performed by mini-
mizing {(exp(BW)) for the backward process, the optimum
protocol of the forward process is obtained from that of the
backward process by simple time inversion, A(¢)=\z(7-1).

III. NUMERICAL PROTOCOL OPTIMIZATION

Previous efforts to find optimum protocols were directed
toward the minimization of the average work performed dur-
ing the switching process [15-18,33]. Here, instead, we de-
termine the protocol that optimizes the accuracy of the free-
energy calculation. As discussed in the previous section, the
statistical error in the free-energy estimator is not simply
related to the average work, such that these two optimization
approaches may yield different results. While the minimum
work protocol can be determined analytically for simple sys-
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tems using a variational approach [15], this is no longer pos-
sible for the minimum error protocol. We therefore resort to
a numerical optimization scheme introduced in this section.

To solve the optimization problem it is first necessary to
define a sufficiently general function space for the switching
protocol. One possibility, which we will use in Sec. IV, con-
sists in discretizing the protocol and specifying it at evenly
spaced time steps. In this case, the discrete values of the
control parameter are the parameters with respect to which
the optimization is carried out. In the following we let a
denote this set of optimization parameters. A less general
function space for the protocol A(¢) comprises smooth poly-
nomials complemented with discrete steps at the beginning
and the end. In this case, the coefficients of the polynomial
are the relevant optimization parameters and the optimization
space is typically much lower dimensional. However, such a
choice provides less freedom and precludes the formation of
steps at positions other than the beginning and the end.

To find the optimum protocol we need to minimize the
figure of merit, the average work or the expected statistical
error, with respect to the parameters. While various optimi-
zation methods can be used for this purpose [34], algorithms
guided by the gradient of the target function are, in general,
more efficient than others. In our case, the target function is
an ensemble average over nonequilibrium trajectories and its
gradient can be determined in the following way. Consider a
general quantity (functional) A[x(z), @] depending on the tra-
jectory x(r) and the protocol A(#) represented by the set of
parameters «. The average of A in the ensemble of nonequi-
librium pathways can be written as

A(a)) = f Dx()Plx(1), alA[x(1), ], (15)

where [Dx(t) denotes the integration over all pathways and
Plx(), a] is the probability of pathway x(¢) given the proto-
col parameters a. The gradient of this average with respect to
the protocol parameters « is then obtained by differentiating
the integrand,

Va<A(a)>=fDx(t)[(VaP)A”’-VQA]

= f Dx(t)[(PV,In P)A+P-V A]
={((V,In P)A) +(V A). (16)
In going from the first to the second line of the above equa-
tion, we have used the identity V,P=PV,In P so that we
can write both terms of the right-hand side as path averages.
For the averages (W), (exp(—=28W)), and (exp(BW)) the

gradients with respect to the optimization parameters are

V{W(@))=((V, In PYW) +(V, W), (17)

V(2P = (V. In P)e2BPY) = 2 (V. W)e 2E"), (18)

and
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FIG. 1. (Color online) Steplike protocol A(z) used in all calcu-
lations. The protocol is optimized with respect to the control param-
eter values {\j, Ny, Ay_1, Ay} for fixed ;=N and A=Ay,

V(P = (Vo In P)eP") + BU(V ,W)ePY), (19)

respectively. Thus, for a particular parameter set «, these
gradients can be computed as averages over nonequilibrium
pathways determined with the corresponding protocol. One
can then minimize the target function using a steepest de-
scent or conjugate gradient procedure [34], in which new
gradients are determined after each step in parameter space.
The iteration is stopped when a local minimum is reached as
detected by the magnitude of the gradient falling below a
certain threshold.

In numerical simulations, the time evolution of the system
is usually followed in small time steps ot and trajectories are
represented by  discrete  sets of  points,  x(¢)
={x0,X1,X2, ... ,Xy_1 Xy}, Where configuration x; is reached
after i time steps. In this case, also the protocol A(z) needs to
be appropriately discretized. Here, we approximate the pro-
tocol by a piecewise constant function that takes the values
\; in the time interval (j—1)t<t<jdt as shown schemati-
cally in Fig. 1. The dynamics is then carried out in the fol-
lowing way. For a given initial condition x, first the control
parameter is changed from its initial value Ag=A\; to \;. Then
a dynamical step is performed for a control parameter fixed
at \; carrying the system from x; to x;. Next, the control
parameter is changed from A; to the value \, at fixed system
configuration x;, after which the control parameter is
changed from A\, to A3. This sequence of operations is then
repeated until the system reaches configuration x, after a
total of N steps. As a final operation, the control parameter is
changed from Ay to its final values Ny, =\,. This final step
is done for symmetry such that also the reverse process starts
with a change in the control parameter. Thus, the discretized
version of the protocol is given by  A(?)
={NosN1sN2s - s AysAys1)- Schematically, the dynamics of
the system under the changing control parameter can be rep-
resented as

X0 N\ Ay XN
No—= N, Xo—Xp, Xy =Xy, A= Aygp. (20)

Here, the symbol over the arrow indicates the quantity held
fixed while the corresponding step happens either by direct
manipulation, A;—\;,, or following the dynamics of the
system, x;— x;,1. Since No=\; and Ny, ;=Np, the initial and
final values of the control parameter, are given, only the
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intervening values can be tuned to minimize the average
work or the expected statistical error. Thus, in this case, the
parameter set « that controls the shape of the protocol is
given by the N values of the control parameter, «
:{)\1’)\2»'“7)\N—1’)\N}'

In computing the derivatives V,In P and V, W with re-
spect to the control parameter values \; it is necessary to take
into account the conventions for the switching process speci-
fied in the previous paragraph. In particular, work is carried
out only during the changes of the control parameter leading
to the total work

N

W= 2, H(x, Ny ) — H(x;,\,) (21)
=0

performed along a particular trajectory x(¢). From this ex-
pression it is straightforward to calculate the derivatives
dW/d\; for a specific energy function H(x,\). Similar de-
rivatives need to be taken in the calculation of dIn P/o\;.
For the stochastic dynamics considered in the next section
this poses no difficulties.

IV. EXAMPLE APPLICATIONS

In this section we determine optimum protocols for a few
simple models ranging from a particle in a harmonic trap, for
which the protocol has been optimized analytically by
Schmiedl and Seifert [15], to a polymer whose end points are
separated from each other by an external force.

A. Shifted harmonic trap

Consider a colloidal particle moving in one-dimension
through a viscous liquid with a harmonic laser trap. The
motion of the trap is specified by the control parameter \(z),
the center of the trap, which is changed from its initial value
A; at time 7=0 to its final value A, at time 7. During the
translation the trap is felt by the particle as a quadratic ex-
ternal potential with force constant &,

U = 3L NOP, (22)

where x denotes the position of the particle. For sufficiently
large friction, the motion of the particle can be described by
an overdamped Langevin equation,

y=f+§, (23)

where vy is the friction coefficient and f=—k[x—\(z)] is the
external force. The random force ¢ is modeled as
o-correlated Gaussian white noise with vanishing mean,
(&(r))=0, and a variance given by the fluctuation-dissipation
theorem, (&(r)&(¢'))=2ykgTS(t—1t'). The diffusion constant D
is related to the friction coefficient by the Einstein relation
D=kgT/y. Note that for this model, the free energy does not
depend on the trap position and therefore the free energy
between the equilibrium states corresponding to the initial
and final position of the laser trap vanishes, AF=0. Also, the
forward and backward processes are identical and lead to the
same work distribution.
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The stochastic equation of motion (23) can be integrated
in small time steps ot under the assumption that the force
f(x) is constant during the time step [35],

X(i+1)or = Xig BDbtf(x;5) + x, (24)

where dx is a random variable drawn from a Gaussian dis-
tribution with zero average and a variance of 2Ddt. Since
overdamped Langevin dynamics is Markovian, the probabil-
ity of a particular discretized trajectory  x(r)
={xy,X5,X25,-..,X,; With time step & can be written as a
concatenation of short time transition probabilities,
e—ﬁU(X()»)\,')
P=— X5 — X(; , 25
Z()\l) i p[ iot (t+l)5t] ( )
where Z()\;) is the partition function corresponding to the
initial value of the control parameter. For overdamped
Langevin dynamics, the short time transition probability
p(x—y) is given by [36]

1
x—y)= exp) —
P Y \,'/4 7D 6t P

where f=—k[x—\(r)] is the force exerted on the particle by
the moving trap. Since the external force depends on the trap
position, the path probability is a functional of the protocol
\1).

For this model, Schmiedl and Seifert determined, using a
variational approach, the protocol \*(z) that minimizes the
average work carried out for given initial and trap final po-
sitions, \;=0 and A, and a total time 7[15],

(y—x—ﬂDéer} 06)
4D 6t

0 for r=0,
. Kt+1
N(@O=yN—— for 0<1<, (27)
KT+ 2
As for t=1.

where k=k/y is a constant with unit of one over time. The
inverse of « is the typical relaxation time of the system in the
trap with force constant k. Thus, this optimum work protocol
has two discrete jumps of equal size

)\ﬁ
A= KT+2 28)

at the beginning and at the end. Between the jumps, the
protocol is linear with slope A\;«/(«x7+2). Thus, the jumps
are largest for instantaneous switching, 7=0, and they vanish

in the slow switching limit, 7— .

The average work carried out for the optimum protocol,

2

e (29)
KT+ 2

is smaller than that of the linear process,

lin S KT+e " T—1
=N/,
(W=
by as much as 14% for 7=2.69x7' [15]. Note that the work
ratio (W)*/(W)" does not depend on the trap displacement
A but only on the total time of the switching process. The

(30)
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FIG. 2. Average work as a function of the switching time 7 for
the linear protocol (thick solid line) and the optimum protocol
(thick dashed line). Also shown are the average work contributions
of the initial jump (thin solid line), the final jump (thin dashed line)
and the linear part (thin dotted line) of the optimum protocol.

average work carried out for the linear and the optimum
protocol is shown in Fig. 2 as a function of the switching
time 7.

Although the jumps at the beginning and the end have
equal size, the work carried out during the two jumps differs.
The average work for the first jump can be easily calculated
as integral over the initial equilibrium distribution,

R
(Wi = 2(kT+2)% (1)

To determine the average work for the jump at the end one
needs to know the position distribution of p(x,7) at time 7
just before the final jump. This distribution can be deter-
mined explicitly by solving the appropriate Fokker-Planck
equation for the trap moving at constant speed between the
two jumps [37]. Integration over p(x,7) then yields

3kN2

(kT+2)% (32)

W); =
Wy =3
The work carried out during the uniform translation of the
trap between the jumps is given by

: . A kN
W)= (WY =Wy = (W)= =2 (3)

Thus, for all switching times, the work carried out during the
final step is three times larger than that performed at the start,
(W);=3(W);. While in the limit of short switching times, 7
—0, all the work is carried out during the two jumps, the
linear part of the protocol contributes most to the average
work for long switching times, 7— . The work carried out
at the jumps and during the linear part of the protocol is
displayed in Fig. 2 as a function of the switching time .
An interesting question is how the position distribution
p(x,1) evolves in time for the optimum protocol. Due to the
shape of the trap, the initial distribution p(x,0) is Gaussian
with mean (x(0))=X\; and variance 0>(0)=1/ k. Since in the
Fokker-Planck equation for the parabolic trap the coefficients
are independent of the position, a distribution which is
Gaussian initially will remain Gaussian for all later times
with time-dependent average (x(¢)) and variance oi(t)
[37,38]. In general, the particular time evolution of the aver-
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age and the variance depend on the shape of the protocol \(z)
[37,38]. Since the initial distribution is the Boltzmann-Gibbs
equilibrium distribution, the variance of p(x,7) does not
change in time, ()= 1/ Bk. The time evolution of the center
(x(t)) of the distribution is given by [38]

t
(x(0) = J dr' e =N(). (34)
0
For the optimum protocol, integration yields
A skt
(x(2)) = . (35)
KT+2

Thus, in the case of the optimum protocol, the time-
dependent distribution p(x,r) is a Gaussian with constant
variance moving with the same speed of the trap. The lag
between the trap and the center of the distribution is equal to
the jump size AN. Note that such a constant lag arises only
for the particular jump size of the optimum protocol. Only
then is the distribution in the right position with respect to
the trap from the beginning of the switching process. For all
other jump sizes (including a vanishing jump size), the lag
approaches A\ exponentially with time constant x~'=17/k.
Apparently, the work savings obtained in this particular situ-
ation during the linear translation of the trap are sufficient to
compensate for the extra work carried out during the discrete
jumps at the beginning and the end of the switching process.

As mentioned previously, the average (exp(-2B8W)),
which determines the magnitude of the error in the free en-
ergy, is fully determined by the work distribution P(W). It is
therefore of interest to establish the work distribution for the
optimum protocol. This can be done by considering the joint
probability distribution p(x,w,t), where w is the work accu-
mulated along a particular trajectory up to time 7 [37]. Since
the coefficients in the corresponding Fokker-Planck equation
are constant or linear in x and w for a parabolic trap, a
distribution which is initially Gaussian will remain Gaussian
later with moments that are functions of time. The work
distribution can then be obtained from p(x,w,7) by integrat-
ing out the position variable x. Thus, the work distribution
P(W) of the complete switching process is Gaussian for any
switching protocol A(z), including protocols with discrete
steps occurring at arbitrary times. Such a work distribution is
fully determined by the average work (W), because the
Jarzynski identity implies that for a Gaussian work distribu-
tion the variance o7, is related to the average by AF=(W)
- ,80'?4,/ 2. This result implies that for Gaussian work distri-
butions minimizing the average work are equivalent to mini-
mizing the work variance.

For Gaussian work distributions the average
(exp(-28W)) can be computed analytically, (exp(-28W))
=exp(2B(W)). It follows that in this particular case minimiz-
ing the average work is equivalent to minimizing the error in
the free-energy estimate. Hence, the optimum protocol ob-
tained by Schmiedl and Seifert for the particle in the trap
[15] [see Eq. (27)] is also optimal in the sense of free-energy
computation. Note, however, that this is not a general result,
but is limited to situations with Gaussian work distributions.
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The error of the free energy obtained with the optimum
protocol relative to that of the linear protocol is then given
by

N ST

* [{ ,—2BW\*
£ V(e ) «_yulin
— = BUWY=(W)™) (36)

Since the error ratio &*/&'"™ depends on the work difference
(WY —(W)I" rather then on the work ratio (W)*/(W)Hin it
reaches its minimum at 7=1.37«"! and not at 7=2.688«"" as
the work ratio. The time 7 at which the work difference
(Wy*—(W)l" is a minimum does not depend on the trap dis-
placement A\, The magnitude of the error ratio, however,
decreases with increasing trap displacement A, While for a
trap displacement of N=1/VBk the error ratio is &*/ ghn
=0.96, for A;=10/ VBk the error ratio is as low as &"/e
=0.028 implying a considerable reduction in the computa-
tional effort required to obtain a given accuracy.

Since the computational cost of a free-energy calculation
is proportional to the number of integrated trajectories, a
more relevant measure for the efficiency of a protocol is the
number N,y of trajectories required to obtain a statistical er-
ror of about 1 kg7 in the free-energy estimate [see Eq. (10)].
The number Ny, of trajectories required for the optimum
protocol relative to the number N}:; of trajectories required in
the linear protocol is given by

lin

7= N,:T = exp{2B(W)" = (W)'")}. (37)
Nz

For 7=1.372k, at which the difference in work between the
minimum and the linear protocol reaches its minimum, the
ratio of required trajectories is 7=0.93 and 7=0.16X 107
for trap displacements of \,=1/ \VBk and N;=4/\ Bk, respec-
tively. In the latter case, a total of 13 000 is required to reach
an accuracy of 1 kgT in the free-energy estimate using the
optimum protocol. An even more substantial reduction in
computation cost results for larger trap displacements. For
instance, for a trap displacement of A;=10/ \Bk the compu-
tational cost is reduced by more than a factor of 10°. In this
case, however, more than 10% trajectories are needed to
reach an accuracy of 1 kg7 even using the optimum proto-
col. The reduction in computational cost as well as the num-
ber of required trajectories are shown in Fig. 3 as a function
the trap displacement for 7=1.372x~'. As can be inferred
from the figure, depending on the parameters, the optimum
protocol can lead to considerable savings in computing time,
which can exceed by far the relative reduction in the average
work. It is, however, important to realize that one can exploit
such large reductions in computational cost only if the total
number of trajectories required to reach the desired statistical
accuracy is within the available computing capacity. Fre-
quently, however, the number of required trajectories is be-
yond what can be computationally achieved such that the
potentially large savings in computing time with respect to
the linear protocol cannot be realized in practice.

Although for the particle in the translated harmonic trap
the minimum error protocol is identical to the minimum
work protocol known analytically [see Eq. (27)], we next
determine the optimum protocol numerically in order to test
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FIG. 3. Top: reduction in computational cost n:NZT/N% as a
function of the trap displacement )\f-\s’,Bk for total time of 7
=1.37«7!, at which % is minimal. Bottom: number of trajectories
required with the optimum and the linear protocol to obtain an
accuracy of 1 kg as a function of A\ Bk for 7=1.37«7".

our optimization algorithm. Initial conditions for the fast-
switching trajectories are sampled from a Boltzmann distri-
bution. From each initial condition a trajectory of length 7 is
determined by integrating the Langevin equation with the
algorithm of Eq. (24). Averaging over all trajectories one
obtains the gradients of Eqgs. (17)—(19). The gradients are
then used in a conjugate gradient algorithm [34] to generate
a new set of parameters a. The size of the conjugate gradient
steps is determined empirically rather than by a line minimi-
zation. The optimization is terminated as soon as the magni-
tude of the respective gradient falls below a given threshold.

The results of the protocol optimization, obtained from
5X10% trajectories of length 7=1.0«"! for the switching
from \;=0 to )\f=1/\e“',8k with time step size d=0.002«7",
are shown in Fig. 4. Here, the optimization is done in a
500-dimensional parameter space. The protocols determined
by minimizing (W) agree very well with the analytical result
of Schmiedl and Seifert [15]. As expected, statistically indis-
tinguishable results are obtained if the expected error is mini-
mized instead of the average work.

1

'theory
0.8 Ap=0.5,...,4.0 (Bk)-l/z
& 0.6
< 04|
0.2
0

0 0.2 0.4 0.6 0.8 1
-1

t/x

FIG. 4. (Color online) Optimum protocols for the shifted har-

monic potential, obtained by minimizing (W) for 7= 1.0/(;1 and dif-

ferent trap displacements ranging from A,=0.5/ Bk to As

=4.0/+Bk (solid lines). The dotted line indicates the optimum pro-
tocol found analytically by Schmiedl and Seifert [15].
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FIG. 5. (Color online) Average work (W) normalized by the
average work (W)!" of the linear protocol as a function of the num-
ber of minimization steps determined for 7= 1.0x7!, a trap displace-
ments of )\f=1.0/\e’ﬁk and different number of trajectories N per
iteration. The minimization is carried out using a conjugate gradient
procedure.

The convergence of the average work to its minimum
value in the minimization process is depicted in Fig. 5. After
just a few iterations, the average work reaches its minimum,
which exactly corresponds to the theoretical result of
Schmiedl and Seifert [15]. Note that at least about N
=100 000 trajectories per iteration are required to make the
protocol optimization possible. Only then is the statistical
error in the average work significantly smaller than the re-
duction in the average work achievable in the optimization.

B. V-shaped trap

To study the effects of a nonharmonic trap we determined
the optimum protocol also for the V-shaped trap potential

UL N1 = hlx - A ()], (38)

which exerts a force of constant magnitude / on the particle
driving it toward the trap center. The particle evolves in time
according to the overdamped Langevin equation, Eq. (23).
As in the case of the harmonic potential, the trap is displaced
from \; to Ay in the time 7 and the free energy does not
depend on the trap position A, AF=0. For this particular trap
shape the calculation of the gradients of the work and the
expected error requires some care, because the kink at A=0
leads to a singularity in the force derivative. Using the ap-
propriate expressions, however, the gradients can be deter-
mined numerically without difficulties. In all our numerical
calculations we measure energies in units of kg7, lengths in
units of 1/(Bh) and times in units of x'=ykgT/h> corre-
sponding to the choice kg7=1, h=1 and y=1.

The protocols obtained by minimizing the average work
and the expected error are shown in Fig. 6. In each iteration
of the optimization procedure 10% trajectories of length 7
=1«7! were integrated with time step 6¢=0.002«"" for a trap
displaced from \;=0 to \;=1/(Bh). A total of 30-90 itera-
tions were carried out in this 500-dimensional parameter
space. As in the case of the harmonic trap, both optimum
protocols are characterized by discrete step at the beginning
and the end of the switching process. In contrast to the har-
monic case, however, the work distributions are strongly
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FIG. 6. (Color online) Minimum work protocols (top) and mini-
mum error protocols (bottom) for the V-shaped trap for various trap
displacements. The trajectories length was 7=1x"".

non-Gaussian such that the work minimization and the error
minimization yield distinctly different protocols.

The work ratio (W)*/(W)'" and the reduction in compu-
tational cost calculated for the optimized protocols are
shown as a function of the trap displacement in Fig. 7, re-
spectively. For small trap displacements the work optimized
and the error optimized yield similar improvements. For
larger displacements, however, the work optimized protocol
leads to an increase in the computational cost of the free-
energy computation. Similarly, the error optimized protocol
reduces the computational cost while leading to an increase
in the average work with respect to the linear protocol. In the

1.02 } work minimized —+—
error minimized —>%—

lin

*

<W> /<W>

work minimized —+—
error minimized —»%—

0.5 1.0 1.5 2.0 2.5 3.0
Ae (Bh)

FIG. 7. (Color online) Work ratio (W)*/(W)i" (top) and reduc-
tion in computational cost 77=N}:T/ N};; (bottom) as a function of the
total displacement A; of the V-shaped trap for the minimum work
protocol and the minimum error protocol, respectively.
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FIG. 8. (Color online) Work distributions obtained for the
V-shaped trap for \y=3(h using the linear protocol, the minimum
work protocol and the minimum error protocol. These work distri-
butions were obtained from 10® trajectories integrated with a time
step of 6r=0.002x"1.

best case studied for this example, the reduction in compu-
tational cost is about 10% and a reduction in similar magni-
tude is observed for the average work.

The work distributions generated using the linear protocol
and the two optimum protocols, shown in Fig. 8, differ no-
ticeably. Due to the particular shape of the trap, the work
distribution is strictly bound from above and below. The
maximum amount of work, Wy, =h\, is performed along
trajectories for which the particle is on the left of the trap
center experiencing a force of F=h at all times during the
transformation. Trajectories for which the particle resides on
the right of the trap center, on the other hand, lead to the least
possible amount work, Wy,=—hNp At Wy, and W, the
work distribution has two singularities, caused by the finite
fraction of trajectories for which the particle never crosses
the trap center during the transformation. Trajectories, along
which the trap center is crossed repeatedly lead to interme-
diate work values, —h\;<W<h\;. The optimum work pro-
tocol achieves the work reduction essentially by lowering the
statistical weight of the high work peak at W, =hN, and
increasing that of the low work peak at W,,,,=—h\. Inter-
estingly, the optimum work and the optimum error protocol
lead to an almost complementary step structure in the inter-
mediate work range, most likely due to the combined effect
of the discrete jumps of the control parameter at the start and
the end of the switching process. Note, however, that the
significance of these steps in the work distribution is exag-
gerated by the logarithmic scale used on the ordinate of Fig.
12.

The maximum amount of work is carried out if the trap is
translated in a sudden jump from A; to A,. In this case, the
work distribution is given by
-Bh\

1 e
Pimp(W) = 2 8(W = hiNp) + S(W + h\)

+ ge—ﬂWrW)’za(vw IN[L = 6(W = h\p)],
(39)

where 8(x) is the Dirac delta function and 6(x) is the Heavi-
side step function. Thus, the work distribution for the sudden
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transformation has delta peaks of different magnitude at W
=hA;and W=-hM,, respectively, and varies continuously be-
tween these two values. Outside the interval [-AN;,h\/] the
work distribution vanishes. For the sudden jump, the average
work obtained by integration over the work distribution
equals

(WH™P = o\ — /lg(l —e P, (40)

Here, the first term results from particles lifted by A\ during
the jump and the second term is a correction caused by a
slightly smaller lift for the particles that are on the right of
the trap center in the equilibrium distribution of the trap
located at \;. For trap displacements that are large compared
to the width of the equilibrium distribution, N> 1/ gk, the
average work is (W)™~ h\ —1/f. The average work values
obtained for the optimum protocols are considerably lower
than the average work of the jump protocol. For instance,
with respect to the jump protocol, the average work of the
optimum protocol is reduced by 40% and 12% for \;
=0.5B8h and A\;=3.0Bh, respectively. From the work distribu-
tion of Eq. (39) one can also determine the number of sudden
transformations required to obtain an accuracy of about
1 kgT in the free-energy estimate,

]vjkr;i_p — <€—2/3W>jmp — %e—Zﬁh)\ + %eﬁhk’ (41)

a number which grows rapidly with increasing trap displace-
ment and is considerably larger than the number of trajecto-
ries required for the minimum error protocol. For trap dis-
placements of A;=0.56h and N\;=3.0Bh, for instance, the
minimum error protocol yields a reduction in N of 8% and
14%, respectively.

C. Shifted harmonic trap on nonflat landscape

As a further example with a non-Gaussian work distribu-
tion we consider a particle in a harmonic trap experiencing
an additional external time-independent force. The particle
evolves according to the overdamped Langevin equation
with potential energy

k
Ule,0) = Sx=NOF + Uy(x), (42)
where the external potential, depicted in Fig. 9, is given by
U,x)=¢[l-(x/o- 1)2]2+§(x/0'—1). (43)

Here, k is a force constant and € and o are constants with
units of energy and length, respectively. The above potential
(see Fig. 9) has minima at x=~0 and x=~2 and in the course
of the transformation the trap is moved from A\;=0 to A, in a
time 7. This example is chosen to mimic a biomolecule with
two stable conformations that is stretched mechanically, for
instance using optical tweezers [39]. Due to the external po-
tential U,(x) the free-energy difference between the equilib-
rium states corresponding to the initial and final trap posi-
tions takes a nonzero value in contrast to the previous two
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FIG. 9. External potential U,(x) acting on the particle as it is
translated in the moving harmonic trap.

examples. In the following, we measure energies in units of
kgT, lengths in units of l/y’ﬁ, and times in units of x!
=vylk.

Minimum work protocols obtained for trajectories of
length 7=1«"", a trap displacement of \;=2/Bk and vari-
ous strengths of the external potential are shown in the top
panel of Fig. 10. For each iteration 2 X 10® trajectories were
generated with a time step of 8t=0.002«~'. Minimum error
protocols for the same set of parameters are shown in the
bottom panel of Fig. 10. As in the previous examples, dis-
crete steps develop at the beginning and the end of the
switching process both for the optimum work protocol and
the optimum error protocol. While for small strengths & of
the external potential the minimum work and the minimum
error protocol are very similar, for large € the steps of the
minimum error protocol are more pronounced.

The reduction in work achieved by the minimum work
protocol and the minimum error protocol with respect to the
linear protocol is depicted in the top panel of Fig. 11 as a
function of the strength € of the external potential. As ex-

2 — e=4.0kgT
——— e3.5kpT
€=2.0 kgT
——— e=25kgT
157 e=2.0 kpT
——— e=1.5kpT
o ——— e=10kpT
— — &=0.5kgT
A 1
<o N
=
<
0.5
0
2 €=4.0 kT
e=3.5kgT
€=2.0 kgT
1.5t £=2.5 kT
£=2.0 kpT
N e=1.5kgT
— e=1.0 kpT
A 1 £=0.5 kpT
<
0.5
0

0.0 0.2 0.4 0.6 0.8 1.0

FIG. 10. (Color online) Minimum work protocols (top) and
minimum error protocols (bottom) for the harmonic trap shifted on
a nonflat energy landscape for various strengths & of the external
potential. The trajectories length was 7=1«"! and o=1/+ Bk.
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FIG. 11. (Color online) Work ratio (W)*/(W)" and reduction in
computational cost =N,/ N}C‘; as a function of the strength & of the
external potential for the minimum work protocol and the minimum
error protocol, respectively.

pected, the average work for the minimum work protocol is
lower than that of the minimum error protocol, although they
differ only slightly. The work reduction is most pronounced
for small strengths €. A similar dependence on the strength &
is observed for the reduction in computational cost, shown in
the bottom panel of Fig. 11. The reduction in computational
cost, reaching up to about 10%, is more pronounced than the
reduction in work, which does not exceed 6% in the param-
eter range of our calculations.

Work distributions obtained for the linear protocol and the
optimized protocols are shown in Fig. 12. For each distribu-
tion, 108 trajectories of length 7=1«"! were generated with a
time step of 8r=0.002". In this case, the work distributions
of the optimum work and optimum error protocols are very
similar, but they differ considerably from the work distribu-
tion of the linear protocol.

D. Stretched polymer

As a higher-dimensional example, we study a polymer
that is stretched while it evolves deterministically according

0.6

unoptimized
0.5 | work optimized
04 error optimized - - - -

03 f

p(W)

02t
0.1

-3 -2 -1 0 1 2 3
W/ (kgT)
FIG. 12. (Color online) Work distributions obtained using vari-

ous protocols for the harmonic trap translated on a non-flat energy
landscape for an external potential strength of e=0.5kgT.
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to Newton’s equations of motion. Our calculations indicate
that also in this case discrete jumps of the control parameter
at the beginning and at the end of the switching process
reduce both the average work as well as the statistical error
in the free-energy estimate.

The model polymer consists of a string of N beads of
mass m with positions r; and momenta p; connected with
harmonic springs to their neighbors. The Hamiltonian of the
system is given by

N pz N-1 N-2 N
H=2 2=+ 2 Uplriw) + 2 2 Uwealry),  (44)
=1 2m o i=1 j=i+2

where r;j=|r;—r,| is the distance between particles i and .
The bond potential

Uy(r) = §<r R, (45)

keeps the distance between subsequent beads close to the
equilibrium distance R. Particles not connected by such a
bond interact via the purely repulsive Weeks-Chandler-
Anderson potential [40],

o\12 [o\6
4e (—) —(—) +e for r=2"g¢,
Uwcalr) = r r

0 for r>2Y0¢,
(46)

where € and o are parameters setting the strength and the
interaction range of the particles, respectively. The instanta-
neous state x of the system is specified by the positions and
momenta of all particles, x={r;,r,, ..., ry,P{,P2, ..., Pn}. In
the following, we measure lengths in units of o, energies in
units of € and times in units of (e/mo?)~"2.

The polymer is stretched by controlling its end-to-end dis-
tance r=|ry—r,|, i.e., the distance between the first and last
bead in the string. The stretching process is performed as
follows. First, an initial configuration is generated using a
canonical Monte Carlo simulation at reciprocal temperature
B with end-to-end distance fixed at a given initial value r;.
After assigning momenta from the appropriate Maxwell-
Boltzmann distribution, the Newtonian equations of motion
are then integrated stepwise with a time step ot using the
velocity Verlet algorithm. During the molecular dynamics
steps, the first and last beads of the polymer are kept at fixed
positions while all other atoms evolve according to the equa-
tions of motion. After each step, however, the control param-
eter, i.e., the end-to-end distance r, is increased by an amount
AN prescribed by the protocol A(¢). The change in the control
parameter r is carried out by displacing instantaneously the
first and the last bead by Ar;=—(AMN/2)e and Ary
=(AN/2)e/2, respectively. Here, e=(ry—r;)/|ry—r| is the
unit vector pointing from bead 1 to bead N. Using these
trajectories, the exponential work average is evaluated with
the large time step method [19], which permits an in prin-
ciple exact free-energy computation even if the individual
trajectories are inaccurate due to the finite size of the time
step o
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FIG. 13. (Color online) Reversible work F(r) as a function of
the end-to-end distance r for a polymer with N=10 beads and for
parameters k=10e/0” and R=0 computed from a fast-switching
simulation (solid line) and a canonical molecular dynamics simula-
tion (dotted line). In the fast-switching simulation 10° trajectories of
length 7=100(e/ma?)~"? were integrated and the molecular dy-
namics simulation consisted of 10'! time steps of length &t
=0.001(e/ma*)~"2.

For reference, we have calculated the free energy as a
function of the end-to-end distance using a canonical mo-
lecular dynamics simulation with an Andersen thermostat
[41]. This can be done by computing the distribution P(r) of
the end-to-end distances,

P(r)=(dr-r(x)], (47)

where r(x) denotes the end-to-end distance in state x. The
free energy F(r), or, more precisely, the reversible work re-
quired to change the end-to-end distance r, is then given up
to an irrelevant constant by

F(r)=—=kgT In P(r) + 2kgT In r. (48)

The last term in the above equation corrects for the number
of configurations available at a given end-to-distance r,
which is proportional to the surface area of a sphere with
radius r. The free energy F(r) computed in this way for a
polymer of N=10 beads at a reciprocal temperature of [
=1/e€is shown in Fig. 13. At small end-to-end distances r the
reversible work F(r) increases to the direct repulsion of the
first and the last bead. At large r, the increase is caused by
the combined energetic effect of the harmonic springs and
the entropic contribution due to the smaller number of con-
figurations available to the intermediate beads.

Since the dynamics considered here is deterministic rather
than stochastic, we cannot determine the optimum protocol
in the way described in Sec. III. Instead, we optimize the
protocol in a restricted subspace without using gradients in
the optimization procedure. We consider a protocol with in-
stantaneous jumps of arbitrary heights AN; and AA, at the
beginning and the end, respectively. Between the jumps, the
control parameter is a linear function of time, A(£)=N;+ A\,
+(N—AN;~N;—AN)t/ 7. For a particular trajectory length 7,
the average work and the number of required trajectories are
then functions of the two step sizes AN; and A\, which
completely specify the protocol. Although the requirement of
a linear central part may be a strong constraint imposed on
the protocol, it is nevertheless interesting to know, whether

021127-11



PHILIPP GEIGER AND CHRISTOPH DELLAGO

<W>/ <w>ln
1.08
1.06
1.04
1.02
1

0.98
0.96
0.94

A\¢/ G

0 01 02 03 04 05 06
(a) AN/ G

Nir /NG
3
2.5

Akl ©
8]

0 02 04 06 08 I
(b) M/

FIG. 14. (Color online) Color coded map of the average work
(W) (top) and of the reduction in computational cost 7=N;/ NZ;
(bottom) for the stretched polymer as a function of the jump sizes
AN; and ANy at the beginning and the end of the stretching process,
respectively.

discrete steps in the protocol are beneficial in terms of the
average work and the statistical error in this restricted proto-
col space. A more general representation of the protocols, for
instance using polynomial functions, can be used to find bet-
ter approximations to the optimum protocols.

To find the jump sizes of the minimum work protocol, we
have determined the average work (W) for 60X 60 pairs
{AN;, AN/} of jump sizes. The jump sizes are selected at regu-
lar distances from the interval [Oc, 1¢]. In each calculation,
5X 103 trajectories of length 7=3(e/mo?)~"> were inte-
grated with a time step of 5t=0.01(e/mo?)~"? while the con-
trol parameter was changed from \;=30 to the final \;=90.
This rather large time step can be used, because the Jarzynski
equation is evaluated using the larger time step formalism
[19]. The corresponding free-energy difference is BAF
=6.2763+0.0001. [This accurate free-energy estimate was
obtained from 3.2X10% trajectories of length 7
=50(e/mo?)~"2.] The average work computed in these simu-
lation is shown in the top panel of Fig. 14 as a color coded
map as a function of the two jump sizes AN; and AN;. The
average work has a clear minimum for jump sizes of
{0.30,0.4807}. For these optimum jump sizes the average
work is (W)=10.58¢, roughly 5% smaller than the average
work obtained with the linear protocol.

The size of the jumps in the minimum work protocol de-
pends strongly on the total switching time 7. To study this
dependence, we have determined the minimum work proto-
col for different times 7 using the procedure described in the
previous paragraph with 44 X 44 grid points and 10° trajec-
tories for each pair of jump sizes. Initial and final jump sizes
are depicted in Fig. 15 as a function of 7. As observed for the
pulled harmonic trap, the jumps are most pronounced in the
fast-switching regime and become smaller with increasing
switching times.
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FIG. 15. (Color online) Magnitudes AN; and A\, of the initial
and final jumps of the minimum work protocols as a function of the
switching time 7 for the stretched polymer.

For trajectories of length 7=3(e/mo?)™"2, as used in the

work minimization, the calculation of the number of required
trajectories Nyy={(exp(-2BW)) is difficult for the reasons de-
scribed in Sec. II. Therefore, we estimate N,y by calculating
the error € according to Eqgs. (5) and (6) from 2000 sets of
10* trajectories. The reduction in computational cost N,/ N}:;
with respect to the linear protocol calculated in this way for
a grid of 44X 44 pairs of jump sizes {AN;, AN/} is shown in
the bottom panel of Fig. 14. As can be inferred from the
figure, a minimum arises near {0.150,0.5307}, at which the
number of required trajectories is reduced by about 30%
compared to the calculation with the linear protocol. Thus,
also for the stretched polymer discontinuous jumps at the
beginning and the end of the protocol reduce both the aver-
age work and the computational effort.

V. CONCLUSIONS

The Jarzynski equality relating equilibrium free energies
to the statistics of work performed on a system by manipu-
lating a control parameter holds for arbitrary switching pro-
tocols. The accuracy of free energies extracted from such
fast-switching experiments or simulations, however, sensi-
tively depends on the particular protocol according to which
the control parameter is driven from its initial to its final
value. This freedom can be exploited to design protocols that
optimize the free-energy computation. The accuracy of the
free-energy estimate is especially affected by the temporal
duration of the switching process [8,9,20]. While for slow
switching the exponential average of the Jarzynski equality
can be accurately computed, large statistical errors make the
fast-switching method impractical for large switching rates.
The accuracy of the free-energy estimate, however, does not
only depend on the rate at which the control parameter is
changed, but also in the particular shape of the protocol. As
recently shown by Seifert and Schmiedl [15,18], protocols
with discrete jumps of the control parameter at the beginning
and at the end of the switching process can lead to a consid-
erable reduction in the average work carried out on the sys-
tem. In this paper we have determined optimum protocols for
given duration of the switching process for various example
systems. Doing this, we have paid special attention to the
question of whether discrete steps in the protocol reduce not
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only the average work but also the expected error of the
free-energy estimate.

To find the protocols that minimize the average work and
the statistical error we have used a numerical steepest de-
scent procedure, in which the values of the control parameter
at different times are the variational parameters that are ad-
justed in the optimization process. In all cases studied in this
paper, which include one-dimensional stochastic systems but
also a higher dimensional model evolving deterministically,
the resulting minimum work and minimum error protocols
have discrete steps at the beginning and at the end (but never
in between) with magnitudes that strongly depend on the
parameters. These steps are particularly pronounced in the
fast-switching limit and they disappear for low switching
rates. In slow switching limit, were the work distributions
become Gaussian, the minimum error protocols and the
minimum work protocols become identical. For fast switch-
ing, however, the two protocols can differ significantly. In
some parameter ranges, the minimum work protocol even
leads to an increase in the error compared to the linear pro-
tocol without steps. Similarly, under certain conditions, the
minimum error protocol can yield an average work larger
than that performed with a linear protocol.

In the case of the particle in the moving harmonic trap,
the minimum work protocol determined analytically by
Schmiedl and Seifert [15] leads to a decrease in the average
work of up to 12% compared to a linear protocol without
steps. We observed work reductions in similar magnitude for
the minimum work protocols determined numerically for the
model systems studied in the previous section. Optimizing
the protocol with respect to the expected error in the free-
energy estimate, on the other hand, can have a much more
pronounced effect. As we have demonstrated analytically for
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the particle in the harmonic trap, the computational cost re-
quired to obtain a certain accuracy in the free-energy esti-
mate for a given total duration of the transformation can be
reduced dramatically by incorporating appropriate discrete
steps in the protocol.

Indeed, in the fast-switching limit, the computational cost
relative to the cost resulting for step-free protocol becomes
arbitrarily small. However, such large improvements occur
only for parameter ranges for which free-energy calculations
using a straightforward application of the Jarzynski equation
are impractical even with the optimized protocol. The same
conclusion must be drawn from the results of our numerical
calculations. Also in these cases, minimum error protocols
may yield substantial computational savings in the calcula-
tion of free-energy energies. In the parameter ranges (switch-
ing time, trap displacement) where the relative improve-
ments are appreciable, however, the statistical errors in the
computation of the Jarzynski average are so large even with
the optimized protocol that an accurate calculation of free-
energy differences is unfeasible. It seems that the optimiza-
tion of other parameters, such as the temporal length of the
switching process, is more likely to yield appreciably im-
provements of fast-switching free-energy calculations.
Whether work biased path sampling techniques [9,42] may
offer a way to exploit the potential power of optimized pro-
tocols is an open question and will be the subject of future
studies in our group.
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